If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5p^2-10p+1.8=0
a = 5; b = -10; c = +1.8;
Δ = b2-4ac
Δ = -102-4·5·1.8
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-8}{2*5}=\frac{2}{10} =1/5 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+8}{2*5}=\frac{18}{10} =1+4/5 $
| 12x^2+38x+27=0 | | x^2−10x+24=0 | | x4−2=5 | | 8x-5x=90 | | x/2x+3=(x-1)/2x | | F(0)=-2x+8 | | (2x)(x+6)=0 | | 14+3m=7 | | 10^3+12x^2-14x=0 | | 5(4x-3)-7(8x+1)=45 | | F(0)=-6x+18 | | 7623981x=67126 | | F(0)=-4x+14 | | 425-x=100+0.2x | | F(x)=-4×+14= | | F(x)=-4×+14 | | 3x=35/2,5 | | 3h^2-16h+16=0 | | -7+6x=x+8= | | 4.6=28/n | | -2(c-12)=-2-12 | | 4x2=x(2x-3) | | X+13=6x-22=3x-1 | | 11x=3x+17-(-47) | | 7x-17=2x+3=4x-5 | | 1/3(3x-3)=6x+5 | | 5x^2-16x+64=0 | | Y-4/3+3y=4 | | F(x)=8x+96 | | 15x+29=100 | | 4+3(k+2)=19 | | 0.09*x=0.03*x(+3500) |